Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Regulatory implementation of the occupational equivalent dose limit for the lens of the eye and underlying relevant efforts in Japan

Yokoyama, Sumi*; Hamada, Nobuyuki*; Tsujimura, Norio; Kunugita, Naoki*; Nishida, Kazutaka*; Ezaki, Iwao*; Kato, Masahiro*; Okubo, Hideki*

International Journal of Radiation Biology, 99(4), p.604 - 619, 2023/04

 Times Cited Count:2 Percentile:19.1(Biology)

In April 2011, the International Commission on Radiological Protection recommended reducing the occupational equivalent dose limit for the lens. Such a new occupational lens dose limit has thus far been implemented in many countries, and there are extensive discussions toward its regulatory implementation in other countries. In Japan, discussions in the Japan Health Physics Society (JHPS) began in April 2013 and in Radiation Council in July 2017, and the new occupational lens dose limit was implemented into regulation in April 2021. To share our experience, we have published a series of papers summarizing situations in Japan: the first paper based on information available by early 2017, and the second paper by early 2019. This paper (our third paper of this series) aims to review updated information available by mid-2022, such as regarding regulatory implementation of the new occupational lens dose limit, recent discussions by relevant ministries based on the opinion from the council, establishment process of safety and health management systems, the JHPS guidelines on lens dose monitoring and radiation safety, voluntary countermeasures of the licensees, development of lens dose calibration method, and recent studies on exposure of the lens in nuclear workers and biological effect on the lens.

Journal Articles

Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay

Wada, Seiichi; Natsuhori, Masahiro*; Ito, Nobuhiko*; Funayama, Tomoo; Kobayashi, Yasuhiko

Nuclear Instruments and Methods in Physics Research B, 206, p.553 - 556, 2003/05

 Times Cited Count:3 Percentile:27.66(Instruments & Instrumentation)

Determining the biological effects of a very low number of charged particles crossing the cell nucleus is interest for estimating the risk due to environmental exposure to charged particles. Especially it is necessary to detect the radiation damage induced by a precise number of charged particles in the individual cells. To compare the number of ions traversing the cell and the DNA damage produced by the hit ions, we applied comet assay. Cells attached on the ion track detector CR-39 were irradiated with 17.3 MeV/u 12C, 15.7 MeV/u, 10.4 MeV/u 20Ne and 6.9 MeV/u 40Ar ion beams at TIARA, JAERI-Takasaki. After irradiation, CR-39 was covered with 1 % agarose. After electrophoresis the CR-39 was taken off from the slide glass. The agarose gel on the CR-39 was stained with ethidium bromide and the opposite side of the CR-39 was etched with KOH-ethanol solution at 37 $$^{circ}C$$. We observed that the ion particles with higher LET value induced the heavier DNA damage, even by the same number of ion-hits within the irradiated cells.

Journal Articles

Microbial effects on high-level waste disposal; Research review and perspective

Onuki, Toshihiko

Genshiryoku Bakkuendo Kenkyu, 9(1), p.35 - 42, 2002/09

Various microorganisms have been observed in deep geologic formation. The effects of such microorganisms on the performance of HLW disposal are still unknown. This paper reviews the studies of microbial effects on the long-term contaiment of HLW disposal, and discusses the future work to be carried out. Microbial reduction and oxidation and byproducts derived from microbial activities affect performance of HLW repository and have a potential to enhance actinides migration in geologic formation (degradation of the materials of repository, complex-formation, dissolution of actinides precipitates and occurrence of nm scale colloid formation). Potential microbial perturbation of performance of the barriers may enhance confinement of actinides by biomineralization, bioadsorption, bioaccumulation and precipitation. These studies indicate that further experiments are required to elucidate microbial effects on the performance of HLW disposal.

JAEA Reports

None

JNC TN1400 99-019, 117 Pages, 1999/10

JNC-TN1400-99-019.pdf:5.25MB

no abstracts in English

JAEA Reports

None

PNC TJ1533 96-005, 199 Pages, 1996/03

PNC-TJ1533-96-005.pdf:7.37MB

no abstracts in English

JAEA Reports

None

Mihara, Morihiro; Yoshikawa, Hideki; Yui, Mikazu

PNC TN8410 94-241, 53 Pages, 1994/07

PNC-TN8410-94-241.pdf:1.34MB

None

Journal Articles

Biological effects of ion beams and its application

Watanabe, Hiroshi; Tano, Shigemitsu*

Genshiryoku Kogyo, 40(2), p.45 - 49, 1994/00

no abstracts in English

Journal Articles

The Japanese nuclear energy encyclopedia edited and computerized to promote public acceptance, Chapter 11; Radiation

Shimooke, Takanori; *; Kobayashi, Kensuke;

Proc. of the Int. Conf. on Radiation Effects and Protection, p.496 - 499, 1992/00

no abstracts in English

Journal Articles

On the twenty-second annual meeting of the national council on radiation protection and measurements

Hoken Butsuri, 22, p.101 - 103, 1987/00

no abstracts in English

10 (Records 1-10 displayed on this page)
  • 1